{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Exporting Visualizations and data\n", "\n", "Sometimes we want to save checkpoints from our data. That means we need to save the data in an appropriate format. The same goes for visualizations that can be used in presentations, reports, and designs.\n", "\n", "Exporting data and visualizations are essential in many fields, such as data analysis, machine learning, and visualization design. \n", "\n", "It involves converting data and visualizations into a format easily shared and used by others. Data export can be crucial when we need to save the state of our analysis or share it with colleagues or clients. Visualizations, on the other hand, can help communicate insights more effectively. Still, they must also be exported in a format that retains their quality and allows them to be easily inserted into presentations or documents. \n", "\n", "In this context, understanding how to export data and visualizations is vital for anyone who works with data or creates visualizations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## How To" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_valueocean_proximity
0-122.2337.8841.0880.0129.0322.0126.08.3252452600.0NEAR BAY
1-122.2237.8621.07099.01106.02401.01138.08.3014358500.0NEAR BAY
2-122.2437.8552.01467.0190.0496.0177.07.2574352100.0NEAR BAY
3-122.2537.8552.01274.0235.0558.0219.05.6431341300.0NEAR BAY
4-122.2537.8552.01627.0280.0565.0259.03.8462342200.0NEAR BAY
\n", "
" ], "text/plain": [ " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", "0 -122.23 37.88 41.0 880.0 129.0 \n", "1 -122.22 37.86 21.0 7099.0 1106.0 \n", "2 -122.24 37.85 52.0 1467.0 190.0 \n", "3 -122.25 37.85 52.0 1274.0 235.0 \n", "4 -122.25 37.85 52.0 1627.0 280.0 \n", "\n", " population households median_income median_house_value ocean_proximity \n", "0 322.0 126.0 8.3252 452600.0 NEAR BAY \n", "1 2401.0 1138.0 8.3014 358500.0 NEAR BAY \n", "2 496.0 177.0 7.2574 352100.0 NEAR BAY \n", "3 558.0 219.0 5.6431 341300.0 NEAR BAY \n", "4 565.0 259.0 3.8462 342200.0 NEAR BAY " ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", "df = pd.read_csv(\"data/housing.csv\")\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "df = df.join(pd.get_dummies(df.ocean_proximity))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "df.to_csv(\"out.csv\", na_rep=\"nan\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Writing any kind of file" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "with open(\"out.txt\", mode=\"w\") as f:\n", " f.write(df.to_string())\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "with open(\"out.txt\", mode=\"w\") as f:\n", " f.write(\"Anything really\")\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "with open(\"out.txt\", mode=\"w\") as f:\n", " f.write(df.to_string())" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "with open(\"out.txt\", mode=\"a\") as f:\n", " f.write(\"Anything really\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Saving Figures" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3yV5d3H8c+VRYCEmQRCBgHCnhkyRHnQYkFwCyrQ+lRrURnuXavV1kc7rBNbaW21bUAkgHtUK0qtkwwIewnkkEBYCdnjnOv5gzx9bIpykJzcZ3zfr1deJjm3J98rFznf3L/cOTHWWkRERPxNmNMBREREjkcFJSIifkkFJSIifkkFJSIifkkFJSIifinCF3caFxdn09LSfHHXIiISZPLy8g5aa+Nbvt8nBZWWlsaaNWt8cdciIhJkjDG7j/d+jfhERMQvqaBERMQvqaBERMQvqaBERMQvqaBERMQvqaBERMQvqaBERMQvefV7UMaYXUAl4AaarLXZvgwlIiJyMr+oe5a19qDPkoiISMDYV1FHz87RPv0YGvGJiIjXrLX85ZNdTPjVKt7duN+nH8vbMygL/M0YY4FnrbWLWh5gjJkDzAFITU1tvYQiIuIXKusauXtFEa+vK2XiwHiyenf16cfztqDGW2tLjDEJwLvGmM3W2tVfPaC5tBYBZGdn6+/Ii4gEkY0lR5m3OJ89h2u4Y8pArpvQj7Aw49OP6VVBWWtLmv9bZoxZCYwGVn/z/yUiIoHOWsuSz4v56Wsb6NohkiU/GsvoPt3a5GOfsKCMMR2BMGttZfPr3wUe9HkyERFxVHV9E/esLOKVwhLO7B/HY5ePIi6mXZt9fG/OoHoAK40x/3f8Ymvt2z5NJSIijtq87yhzc/LZdbCaW88ZwLyz0n0+0mvphAVlrd0JjGyDLCIi4jBrLcvWuLjv1fXERkfy12vGcHq/OEey+OQPFoqISOCpaWji3pfXsyJ/L+PTu/P45RnEx7bdSK8lFZSIiLBtfyVzc/LZfqCKmyb1Z8HZ/Qlv45FeSyooEZEQtzzPxb0vr6dju3D+cvUYzujvzEivJRWUiEiIqm1wc/+r63lpjYsxfbrx1MwMEjr59umLToYKSkQkBG0vq2JeTj5byyqZf1Y6N03qT0S4fz37nQpKRCTEvFK4l7tXFBEdGc7zV43mvwbEOx3puFRQIiIhoq7RzQOvbWTJ53s4La0rT83M9Pkzkp8KFZSISAj48mA1c3Py2VR6lOsn9uPWcwb43UivJRWUiEiQe31dCXctLyIi3PCnH5zGWYMSnI7kFRWUiEiQqmt089Abm/jLp7vJTO3CU7MySerS3ulYXlNBiYgEod2Hqpm3OJ/1e48yZ0Jfbp88kEg/H+m1pIISEQkybxWVckfuOsLCDH+4MptJQ3o4HelbUUGJiASJ+iY3D7+5mec/3sXIlC48PTODlG4dnI71ramgRESCQPHhGuYvzmetq4Krx/fhrnMHERURWCO9llRQIiIB7m8b9nHbsrVY4Hffy2LKsJ5OR2oVKigRkQDV0OThF29v5rmPvmR4UmcWzsoktXvgjvRaUkGJiASgveW1zMvJp7C4nP8e15t7pg2mXUS407FalQpKRCTA/H3Tfm55aS1uj2XhrEymjUh0OpJPqKBERAJEo9vDr9/ZwrOrdzIksRPPzM4kLa6j07F8RgUlIhIASitqWbC4gDW7jzB7TCo/OW8I0ZHBNdJrSQUlIuLnVm0p45alhTQ0eXjiilFcOCrJ6UhtQgUlIuKnmtwefvPuVp75YAeDesaycHYm/eJjnI7VZlRQIiJ+aP/ROhYsKeDzLw9zxWkp/PSCoUE/0mtJBSUi4mf+se0AN71YSE2Dm8cuH8nFGclOR3KECkpExE+4PZYn3tvKU6u20z8hhqWzM0lPiHU6lmNUUCIifqCsso4blxTyyc5DTM9K5sELh9IhKrQfokN79SIifuDj7Qe54cVCquob+dX0EczITnE6kl9QQYmIOMTtsTz9/nae+PtW+sR1JOeaMQzsGbojvZZUUCIiDjhYVc9NLxby0faDXJyRxM8vGkbHdnpI/ip9NkRE2tinOw9xw5ICKmobeeSS4Vx+WgrGGKdj+R0VlIhIG/F4LL/9cAeP/m0Lad078sLVoxmc2MnpWH5LBSUi0gYOVzdw89JCPtx6gPNH9uLhS4YTo5HeN9JnR0TEx9bsOsz8xQUcrmng5xcNY/aYVI30vKCCEhHxEY/HsugfO/nVO1tI7tqeFdefzrCkzk7HChgqKBERHzhS3cCty9by/uYypg7vySOXjqBTdKTTsQKKCkpEpJXl7znC/Jx8DlY18MAFQ7lyXG+N9L4FrwvKGBMOrAH2WmvP810kEZHAZK3luY++5JG3NpPYJZrc68cxIrmL07EC1smcQd0IbAJ0TaSISAsVNY3clruWdzfuZ/LQHvxy+kg6t9dI71R4VVDGmGRgGvAQcItPE4mIBJjC4nLm5eSz/2gdPzlvCFePT9NIrxV4ewb1OHAH8LVPEmWMmQPMAUhNTT31ZCIifs5ay/Mf7+J/3txEQmw0y64bR0ZqV6djBY0TFpQx5jygzFqbZ4yZ+HXHWWsXAYsAsrOzbaslFBHxQxW1jdyZu463N+xj0uAEfj1jJF06RDkdK6h4cwY1HrjAGDMViAY6GWP+aq39nm+jiYj4p/V7K5ibk8/e8lp+PHUw15zZRyM9Hwg70QHW2ruttcnW2jTgCuB9lZOIhCJrLX/5ZBeXPPMxjW4PL107lh9N6Kty8hH9HpSIiBcq6xq5a0URb6wrZeLAeH5z2Si6ddRIz5dOqqCstR8AH/gkiYiIn9pQUsG8nHyKj9Ryx5SBXDehH2FhOmvyNZ1BiYh8DWstiz/fwwOvbaRrh0iW/Ggso/t0czpWyFBBiYgcR3V9E/esLOKVwhLO7B/H45ePontMO6djhRQVlIhIC5v3HWVuTj67DlZz23cHMHdiukZ6DlBBiYg0s9by0ppi7ntlA53aR5JzzVjG9evudKyQpYISEQFqGpq4d+V6VhTsZXx6dx6/PIP4WI30nKSCEpGQt3V/JXNz8tlxoIqbJvVnwdn9CddIz3EqKBEJabl5Ln7y8no6tgvnrz8cw/j0OKcjSTMVlIiEpNoGN/e/up6X1rgY27cbT16RQUKnaKdjyVeooEQk5Gwvq2JeTj5byypZcHY6N36nPxHhJ3zmN2ljKigRCSkvF+zlnpVFREeG88JVo5kwIN7pSPI1VFAiEhLqGt088NoGlnxezOi0bjw5M4OenTXS82cqKBEJejsPVDFvcQGbSo9y/cR+3HrOAI30AoAKSkSC2mtrS7hr+ToiI8L40w9O46xBCU5HEi+poEQkKNU1uvn5Gxv566d7yEztwtOzMunVpb3TseQkqKBEJOjsPlTN3Jx8NpQcZc6Evtw+eSCRGukFHBWUiASVt4pKuSN3HWFhhj9cmc2kIT2cjiTfkgpKRIJCfZObh9/czPMf72JkShcWzsoguWsHp2PJKVBBiUjAKz5cw7zF+axzVXD1+D7cde4goiI00gt0KigRCWjvbNjH7cvWYoHffS+LKcN6Oh1JWokKSkQCUkOTh1+8vZnnPvqS4UmdWTgrk9TuGukFExWUiAQc15Ea5i8uoLC4nP8e15t7pg2mXUS407GklamgRCSg/H3Tfm55aS1uj2XhrEymjUh0OpL4iApKRAJCo9vDr9/ZwrOrdzIksRPPzM4kLa6j07HEh1RQIuL3SsprWbCkgLzdR/je2FTunTaE6EiN9IKdCkpE/NqqLWXcsrSQhiYPT87M4IKRvZyOJG1EBSUifqnJ7eE3727lmQ92MKhnLAtnZ9IvPsbpWNKGVFAi4nf2VdRxw5ICPt91mCtOS+GnFwzVSC8EqaBExK+s3nqAm5cWUtPg5rHLR3JxRrLTkcQhKigR8Qtuj+WJ97by1Krt9E+IYensTNITYp2OJQ5SQYmI48oq67hxSSGf7DzEjKxkHrxwGO2jNNILdSooEXHUx9sPcsOLhVTVN/Kr6SOYkZ3idCTxEyooEXGE22N56v1tPPH3bfSN60jONWMY2FMjPfl/KigRaXMHKuu5eWkhH20/yMUZSfz8omF0bKeHI/l3+hchIm3q052HuGFJARW1jfzi0uFclp2CMcbpWOKHVFAi0iY8HstvP9zBo3/bQlr3jrxw9WgGJ3ZyOpb4MRWUiPjcoap6bn5pLau3HuD8kb14+JLhxGikJydwwn8hxphoYDXQrvn4XGvt/b4OJiLB4Ytdh1mwuIDDNQ08dPEwZo1O1UhPvOLNtzD1wNnW2ipjTCTwkTHmLWvtpz7OJiIBzOOxPLt6J7/+2xaSu7ZnxfWnMyyps9OxJICcsKCstRaoan4zsvnF+jKUiAS2I9UN3LpsLe9vLmPa8EQeuXQ4sdGRTseSAOPVENgYEw7kAenAQmvtZ8c5Zg4wByA1NbU1M4pIAMnbfYQFi/M5WNXAgxcO5ftje2ukJ99KmDcHWWvd1tpRQDIw2hgz7DjHLLLWZltrs+Pj41s7p4j4OWstv1+9k8uf/YTwcEPu9eO4clyaykm+tZO6jMZaW26M+QCYAqz3SSIRCTgVNY3cumwt723az+ShPfjl9JF0bq+Rnpwab67iiwcam8upPTAJ+IXPk4lIQCgsLmdeTj5llXXcd94QrhqvsyZpHd6cQSUCLzT/HCoMeMla+7pvY4mIv7PW8qd/7uLhtzaREBvNsutOZ1RKF6djSRDx5iq+dUBGG2QRkQBRUdvInbnreHvDPiYNTuDXM0bSpUOU07EkyOhXuUXkpBS5Kpi7OI/S8jp+PHUw15zZRyM98QkVlIh4xVrLXz7dzc9f30RcTBRLrx1HVu+uTseSIKaCEpETqqxr5K7lRbxRVMpZA+P5zWWj6NpRIz3xLRWUiHyjDSUVzMvJp/hILXdOGcS1E/oSFqaRnvieCkpEjstay+LP9/DAaxvp2iGSF+eM5bS0bk7HkhCighKR/1BV38Q9K4p4dW0JEwbE89hlI+ke087pWBJiVFAi8m82lR5lXk4+uw5Vc9t3BzB3YrpGeuIIFZSIAMdGeku/KOb+VzfQqX0kOdeMZVy/7k7HkhCmghIRahqauHflelYU7GV8encevzyD+FiN9MRZKiiRELd1fyVzc/LZcaCKmyb1Z8HZ/QnXSE/8gApKJITl5rm49+UiYtpF8NcfjmF8epzTkUT+RQUlEoJqG9zc98p6luW5GNu3G09ekUFCp2inY4n8GxWUSIjZXnZspLetrIobzk7nxkkDNNITv6SCEgkhKwtc/HjleqIjw3nhqtFMGKC/fi3+SwUlEgLqGt088NoGlnxezOi0bjw5M4OenTXSE/+mghIJcjsPVDE3J5/N+yq5fmI/bj1nABHhYU7HEjkhFZRIEHttbQl3LV9HVEQYf7rqNM4amOB0JBGvqaBEglBdo5ufvb6RnM/2kNW7K0/NzKBXl/ZOxxI5KSookSCz62A18xbns6HkKNdO6MttkwcSqZGeBCAVlEgQebOolDtz1xEWZvjDldlMGtLD6Ugi35oKSiQI1De5+Z83NvHCJ7sZldKFp2dlkNy1g9OxRE6JCkokwBUfrmHe4nzWuSr44Rl9uHPKIKIiNNKTwKeCEglgb6/fx+25awF49vtZTB7a0+FEIq1HBSUSgBqaPDzy1mb++M8vGZHcmYWzMknpppGeBBcVlEiAcR2pYf7iAgqLy/nB6WncPXUQ7SLCnY4l0upUUCIB5L2N+7l12Vo8HsszszOZOjzR6UgiPqOCEgkAjW4Pv3pnC4tW72Ror04snJVJWlxHp2OJ+JQKSsTPlZTXsmBJAXm7j/C9sancO20I0ZEa6UnwU0GJ+LFVm8u45aVCGpo8PDkzgwtG9nI6kkibUUGJ+KEmt4dH393Kbz/YwaCesTwzO5O+8TFOxxJpUyooET+zr6KOG5YU8Pmuw8wcncL95w/VSE9CkgpKxI+s3nqAm5YWUtfo5vHLR3FRRpLTkUQco4IS8QNuj+Xx97by9KrtDEiIZeHsTNITNNKT0KaCEnFY2dE6bnixgE93HmZGVjIPXjiM9lEa6YmooEQc9M/tB7nxxQKq6pv49YyRTM9KdjqSiN9QQYk4wO2xPPX+Np74+zb6xcew+EdjGdAj1ulYIn5FBSXSxg5U1nPT0gL+uf0Ql2Qk8bOLhtGxnb4URVo64VeFMSYF+DPQE/AAi6y1T/g6mEgw+mTHIW54sYCjtY384tLhXJadgjHG6Vgifsmbb9uagFuttfnGmFggzxjzrrV2o4+ziQQNj8eycNV2HntvK2ndO/Lnq0czOLGT07FE/NoJC8paWwqUNr9eaYzZBCQBKigRLxyqquempYX8Y9tBLhjZi/+5ZDgxGumJnNBJfZUYY9KADOCz49w2B5gDkJqa2grRRALf518eZsGSfI7UNPLQxcOYNTpVIz0RL4V5e6AxJgZYDtxkrT3a8nZr7SJrbba1Njs+Pr41M4oEHI/H8swH25n5+09pHxnOiutPZ/aY3ionkZPg1RmUMSaSY+WUY61d4dtIIoHtSHUDt7xUyKotB5g2PJFHLh1ObHSk07FEAo43V/EZ4Dlgk7X2N76PJBK48nYfZv7iAg5VNfCzC4fyvbE6axL5trw5gxoPfB8oMsYUNr/vHmvtm76LJRJYrLX8/h87+eXbW0jsEs3y609neHJnp2OJBDRvruL7CNC3gCJfo7ymgduWreW9TWVMHtqDX04fSef2GumJnCpd6ypyCgr2HGH+4gLKKuu477whXDU+TSM9kVaighL5Fqy1/PGfu3jkrU0kxEaz7LrTGZXSxelYIkFFBSVykipqG7kjdy3vbNjPpME9eHTGSDp30EhPpLWpoEROwjpXOfMW51NaXse90wbzwzP6aKQn4iMqKBEvWGv58ye7eeiNTcTFRLH02nFk9e7qdCyRoKaCEjmBo3WN3L28iDeKSjl7UAKPzhhJ145RTscSCXoqKJFvsH5vBfMW5+M6Ustd5w5izpl9CQvTSE+kLaigRI7DWkvOZ3t48PWNdOsQxYtzxnJaWjenY4mEFBWUSAtV9U3cvaKI19aWMGFAPI9dNpLuMe2cjiUSclRQIl+xqfQo83Ly2XWomtsnD+T6/+qnkZ6IQ1RQIhwb6S39opj7X91A5/aRLP7RWMb27e50LJGQpoKSkFdd38S9L69nZcFezkiP47HLRxEfq5GeiNNUUBLStuyrZG5OHjsPVnPzpAHMPzudcI30RPyCCkpC1rI1xfzklfXEtIsk54djOD09zulIIvIVKigJObUNbn7yynpy81yM69udJ2aOIiE22ulYItKCCkpCyvaySubm5LOtrIobzk7nxkkDNNIT8VMqKAkZK/Jd/HjlejpEhfPCVaOZMCDe6Ugi8g1UUBL06hrd3P/KBpauKWZ0n248NTODHp000hPxdyooCWo7DlQxLyefzfsqmTuxH7ecM4CI8DCnY4mIF1RQErReKdzLPSuKiIoI409XncZZAxOcjiQiJ0EFJUGnrtHNz17fSM5ne8jq3ZWnZmbQq0t7p2OJyElSQUlQ2XWwmrk5+WwsPcq1E/py2+SBRGqkJxKQVFASNN5YV8qdy9cRHmZ47r+z+c7gHk5HEpFToIKSgFff5OahNzbx5092k5HahadnZZKkkZ5IwFNBSUDbc6iGeYvzKdpbwTVn9OGOKYOIitBITyQYqKAkYL29fh+3564F4NnvZzF5aE+HE4lIa1JBScBpaPLw8Fub+NM/dzEiuTMLZ2WS0q2D07FEpJWpoCSgFB+uYf6SAtYWl/OD09O4e+og2kWEOx1LRHxABSUB492N+7n1pUKshd/OzuTc4YlORxIRH1JBid9rdHv45dub+f0/vmRYUicWzsqkd/eOTscSER9TQYlfKymvZf7ifPL3lPP9sb358bTBREdqpCcSClRQ4rdWbS7j5pcKaXJbnpqZwfkjezkdSUTakApK/E6j28Ojf9vK7z7cweDETjwzO5M+cRrpiYQaFZT4lX0VdSxYks8Xu44wc3Qq958/RCM9kRClghK/8eHWA9y8tJC6RjePXz6KizKSnI4kIg5SQYnjmtweHn9vG0+v2s7AHrEsnJ1JekKM07FExGEnLChjzB+B84Aya+0w30eSUFJ2tI4FSwr47MvDXJadzAMXDKN9lEZ6IuLdGdTzwNPAn30bRULNR9sOctPSAqrr3Tw6YySXZiU7HUlE/MgJC8pau9oYk+b7KBIqdhyo4q+f7ub5j3fRLz6GJT/KpH+PWKdjiYifabWfQRlj5gBzAFJTU1vrbiVIHK1r5I11pSxbU0z+nnLCDMzISuanFwylQ5R+FCoi/6nVHhmstYuARQDZ2dm2te5XApfHY/lk5yGWrSnm7Q37qGv0kJ4Qw93nDuLijCQSOkU7HVFE/Ji+dZVWt/tQNcvzXCzP38ve8lpioyO4NDOZGdkpjEzujDHG6YgiEgBUUNIqquqbeLOolNw8F59/eRhj4Mz+8dx57iC+O6SHftlWRE6aN5eZLwEmAnHGGBdwv7X2OV8HE//n8Vg++/IwuXku3lpfSk2Dmz5xHbl98kAuyUwisXN7pyOKSADz5iq+mW0RRAJH8eEalue7WJ7vovhwLTHtIrhwVC+mZyWTmdpVIzwRaRUa8YlXahqaeHv9PpatcfHJzkMYA6f3686t5wxk8tCe+uVaEWl1Kij5WtZa1uw+Qu4aF28UlVJV30Rqtw7ccs4ALslMIrlrB6cjikgQU0HJfygpr2VFvovcPBe7DtXQISqcacMTmZ6VzOg+3TTCE5E2oYISAOoa3byzYR+5eS4+2n4Qa2FMn27MP7s/5w7rScd2+qciIm1LjzohzFpLQXE5uXkuXltbQmVdE0ld2rPg7P5Mz0wmtbtGeCLiHBVUCNp/tI4V+XvJzStmx4FqoiPDmDrs2AhvbN/uhIVphCcizlNBhYj6JjfvbSxjWV4xq7cewGMhu3dXfnFpX6YOTyQ2OtLpiCIi/0YFFcSstRTtrSA3z8UrhSVU1DaS2Dma6yf2Y3pWCn3iOjodUUTka6mggtCBynpeLthLbp6LLfsraRcRxuShPZmelcz49DjCNcITkQCgggoSDU0e3t9cRm5eMau2HMDtsYxK6cJDFw/jvBG96NxeIzwRCSwqqAC3oeT/R3iHqxtIiG3HNWf2YUZWMukJ+iOAIhK4VFAB6HB1w79GeBtLjxIVHsY5Q3owPSuZM/vHEREe5nREEZFTpoIKEI1uDx9uOcCyvGLe31xGo9syIrkzD144lPNH9KJrxyinI4qItCoVlJ/bsq+S3LxiVhaUcLCqnriYKH5wehqXZiUzqGcnp+OJiPiMCsoPldc08OraEnLzXKxzVRARZvjO4ARmZKXwXwPjidQIT0RCgArKTzS5Pfxj20Fy81y8u3E/DW4PgxM7cd95Q7hwVC+6x7RzOqKISJtSQTlse1kVuXkuVuS7KKusp2uHSGaNSWVGdjJDe3V2Op6IiGNUUA6oqG3k9XXHRngFe8oJDzOcNTCe6VkpnD0ogagIjfBERFRQbcTtsXy84yDL1rh4Z8M+6ps8DOgRw4+nDuaijCTiYzXCExH5KhWUj315sJrleS6W57soraijc/tILj8thelZyQxP6qw//ici8jVUUD5QWdfIm0WlLFvjYs3uI4QZmDAgnnunDeE7gxOIjgx3OqKIiN9TQbUSj8fy6c5D5Oa5eGv9Pmob3fSL78idUwZxSWYSPTpFOx1RRCSgqKBOUfHhGpbluVie52JveS2x0RFcnJnE9KxkMlK6aIQnIvItqaC+hZqGJt4s2seyNcV89uVhjIEz0uO4Y8pAJg/tqRGeiEgrUEF5yVrLF7uOsGxNMW8WlVLd4Catewdu++4ALslMpleX9k5HFBEJKiqoE9hbXvuvq/B2H6qhY1Q4543oxfTsZLJ7d9UIT0TER1RQx1Hb4OadDftYllfMxzsOYS2c3q87N36nP1OG9aRDlD5tIiK+pkfaZtZa8vccITfPxetrS6msbyKlW3tu+s4ALslMIqVbB6cjioiElJAvqH0VdSzPP3YV3s6D1bSPDGfq8ERmZCczOq0bYWEa4YmIOCEkC6qu0c27G/ezLM/FR9sO4LEwOq0b103sx9ThicS0C8lPi4iIXwmZR2JrLWtdFeTmFfNqYQlH65pI6tKe+Welc0lmMmlxHZ2OKCIiXxH0BVVWWcfK/L3k5rnYVlZFu4gwzh3WkxnZKYzr210jPBERPxWUBVXf5Ob9TWUsy3Px4dYDuD2WrN5defiS4UwbkUin6EinI4qIyAkETUFZa9lQcpTcPBcvF+6lvKaRnp2iuXZCXy7NSqZffIzTEUVE5CQEfEEdrKrn5YJjI7zN+yqJigjju0N6MCM7hTPS4wjXCE9EJCAFZEE1uj2s2nxshLdqcxlNHsvIlC787KJhXDCiF507aIQnIhLovCooY8wU4AkgHPiDtfYRn6b6GptKm0d4BXs5VN1AfGw7fnhGHy7NSmZAj1gnIomIiI+csKCMMeHAQuAcwAV8YYx51Vq70dfhAI5UN/BK4V5y812s33uUyHDDpME9mJGdzIT+8USEh7VFDBERaWPenEGNBrZba3cCGGNeBC4EfFZQTW4Pq7cdYNkaF+9t2k+j2zIsqRM/PX8IF45KomvHKF99aBER8RPeFFQSUPyVt13AmJYHGWPmAHMAUlNTTynUzoPVXP38Grp3jOLKcWlMz0pmcGKnU7pPEREJLN4U1PEug7P/8Q5rFwGLALKzs//j9pMxoEcsOdeMYXSfbkRqhCciEpK8KSgXkPKVt5OBEt/E+X/j0+N8/SFERMSPeXN68gXQ3xjTxxgTBVwBvOrbWCIiEupOeAZlrW0yxswH3uHYZeZ/tNZu8HkyEREJaV79HpS19k3gTR9nERER+RddgSAiIn5JBSUiIn5JBSUiIn5JBSUiIn5JBSUiIn5JBSUiIn7JWHtKz0p0/Ds15gCwuxXuKg442Ar3Eyi03uCm9Qa3UFsvtN6ae1tr41u+0ycF1VqMMWustdlO52grWm9w03qDW6itF3y/Zo34RETEL6mgRETEL/l7QS1yOkAb03qDm9Yb3JhjhtQAAANDSURBVEJtveDjNfv1z6BERCR0+fsZlIiIhCgVlIiI+CXHC8oYM8UYs8UYs90Yc9dxbjfGmCebb19njMl0Imdr8WK9E40xFcaYwuaX+5zI2VqMMX80xpQZY9Z/ze3Btr8nWm+w7W+KMWaVMWaTMWaDMebG4xwTNHvs5XqDZo+NMdHGmM+NMWub1/vAcY7x3f5aax174dgfQNwB9AWigLXAkBbHTAXeAgwwFvjMycxtsN6JwOtOZ23FNU8AMoH1X3N70Oyvl+sNtv1NBDKbX48Ftgb517A36w2aPW7es5jm1yOBz4CxbbW/Tp9BjQa2W2t3WmsbgBeBC1sccyHwZ3vMp0AXY0xiWwdtJd6sN6hYa1cDh7/hkGDaX2/WG1SstaXW2vzm1yuBTUBSi8OCZo+9XG/QaN6zquY3I5tfWl5Z57P9dbqgkoDir7zt4j8325tjAoW3axnXfEr9ljFmaNtEc0ww7a+3gnJ/jTFpQAbHvsv+qqDc429YLwTRHhtjwo0xhUAZ8K61ts3216s/+e5D5jjva9nO3hwTKLxZSz7HnpeqyhgzFXgZ6O/zZM4Jpv31RlDurzEmBlgO3GStPdry5uP8LwG9xydYb1DtsbXWDYwyxnQBVhpjhllrv/ozVp/tr9NnUC4g5StvJwMl3+KYQHHCtVhrj/7fKbW19k0g0hgT13YR21ww7e8JBeP+GmMiOfZgnWOtXXGcQ4Jqj0+03mDcYwBrbTnwATClxU0+21+nC+oLoL8xpo8xJgq4Ani1xTGvAlc2XykyFqiw1pa2ddBWcsL1GmN6GmNM8+ujObZHh9o8adsJpv09oWDb3+a1PAdsstb+5msOC5o99ma9wbTHxpj45jMnjDHtgUnA5haH+Wx/HR3xWWubjDHzgXc4doXbH621G4wx1zXf/jvgTY5dJbIdqAGucirvqfJyvdOB640xTUAtcIVtvlQmEBljlnDsqqY4Y4wLuJ9jP2gNuv0Fr9YbVPsLjAe+DxQ1/5wC4B4gFYJyj71ZbzDtcSLwgjEmnGNF+5K19vW2eozWUx2JiIhfcnrEJyIiclwqKBER8UsqKBER8UsqKBER8UsqKBER8UsqKBER8UsqKBER8Uv/C9nxD31o1ktmAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot([0,1,3,5])\n", "plt.tight_layout()\n", "plt.savefig(\"random.jpg\", facecolor=\"k\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Additional Resources\n", "- [Matplotlib Savefig](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig)\n", "- [Exporting Holoviews](http://holoviews.org/user_guide/Exporting_and_Archiving.html)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }